

PREDICTION OF DRIVER'S STRESS AFFECTION IN SIMULATED **AUTONOMOUS DRIVING SCENARIOS**

VALERIO DE CARO* HERBERT DANZINGER§ CLAUDIO GALLICCHIO* CLEMENS KÖNCZÖL¶

VINCENZO LOMONACO* MINA MARMPENA† SEVASTI POLITI† OMAR VELEDAR‡ DAVIDE BACCIU* *Department of Computer Science, University of Pisa, Pisa, Italy +Information Technology for Market Leadership, Athens, Greece ‡ Institute of Technical Informatics, Graz University of Technology, Graz, Austria

¶ Institute of Psychology, University of Graz, Graz, Austria § AVL List GmbH, Graz, Austria

AVL 3

INTRODUCTION AND STUDY DESCRIPTION

- In Autonomous Driving, the mutual interaction between driven and vehicle loosens, and more implicit means of interaction come into play
- In the TEACHING project, we modelled such interaction by adapting the *driving profile* of the vehicle with respect to the cognitive state of the driver

- In this paper, we investigated the stress affection prediction from the outcome of a pilot study
- The study included 40 participants
- Each participant experienced 6 simulations of autonomous driving (~155s each), including different driving modes and environmental conditions
- During the simulations, the participant worn devices to collect physiological data (GSR, ECG)
- The simulations present stress-inducing events
- After each simulation, the participants answer a questionnaire to provide subjective feedback on the experience

COARSE-GRAINED TASK

- I found the automonous driving experience stressful.
- Answer: [Strongly disagree, Disagree, Neither disagree or agree, Agree, Strongly agree]
- We computed the mean and standard deviation of the physiological signals of each simulation (resulting in a single vector)
- We translated the response of the guestionnaire to a binary label
- A decision tree learns to classify the response of the participant after a simulation, given the statistics of their physiological signal

FINE-GRAINED TASK

- We equipped the sequences with a sequence of binary labels
- A label denotes whether a **potentially stress-inducing event is occurring**
- An Echo State Network (with untrained reservoir, or with reservoir adapted via Intrinsic Plasticity) learns to predict whether the participant is experiencing a stress-inducing event

HIGHLIGHTS AND OBJECTIVES

- The driver's cognitive state is a mean of implicit interaction between the driver and the AD vehicle
- Physiological data reflect the cognitive state of a human, and is effective to determine the cognitive stress
- **Objective 1**: determine the best proxy, among subjective and objective labels, to predict the driver's stress affection from physiological data
- **Objective 2:** obtain a model which is suitable for learning in a pervasive environment (i.e., good trade-off between performance and efficiency in training and inference)

EXPERIMENTAL ASSESSMENT

- Simulation-wise split: scenarios from 1 to 4 are for training, scenario 5 for validation and scenario 6 for test
- Evaluated 5000 configurations for each model (DT, ESN and IP-ESN)
- Assessed accuracy and F1-Score in training, validation and test, and measured training time

		Time (in s)	Accuracy (in %)		
			Train	Eval	Test
CG	DT	≪ 1	74.38 ± 2.20	66.25 ± 4.61	59.69 ± 4.28
FG	ESN	16.6 ± 3.8	60.64 ± 4.64	59.60 ± 4.10	60.61 ± 4.52
	IP-ESN	61.5 ± 12.9	88.71 ± 0.13	84.52 ± 0.67	84.05 ± 0.83

		F1			
		Train	Eval	Test	
CG	DT	0.7091 ± 0.0250	0.6033 ± 0.0425	0.5257 ± 0.0531	
FG	ESN	0.2604 ± 0.0127	$0.2638 \pm \textbf{0.0226}$	0.2715 ± 0.0191	
	IP-ESN	0.6583 ± 0.0080	0.5680 ± 0.0037	$0.5517 \pm \textbf{0.0149}$	

- On the *coarse-grained task*, the performance is poor on the test set due to
 - · Diversity in correlation between physiological data and subjective measurement
 - The statistics collapsing useful input information
- On the *fine-grained task*, the ESN with reservoir adapted IP achieves a good performance in prediction
- Local trends of the physiological signals are more representative of the driver's state in presence of stress-inducing events
- · Both models attain to the efficiency constraint, with a training time ≤ 1 minute

